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Abstract
Rasopathies are the group of related disorders caused by abnormal functioning of the Ras‐mitogen‐
activated protein kinase (RAS/MapK) pathway., a cohort of common congenital anomaly syndromes, 
occurring in 1:1,000 to 1:2,500 live births that have unique fetal features, which can be detected on routine 
prenatal ultrasounds. In the presence of suggestive US (ultrasound) findings, previous studies estimated 
that pathogenic variants in RASopathy genes could be detected in 6.7–21.7% of cases. Some disease-specific 
features, such as an increased prevalence of fetal arrhythmias among cases of Costello syndrome. Prenatal-
onset HCM (hypertrophic cardiomyopathy) is rare and potentially severe to delineate high-risk genotype 
and so accurate diagnosis of fetal rasopathies is essential for improved management of affected pregnancies.
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Introduction
RASopathies are a family of genetic disorders 
with more than 20 disease-associated genes 
are identified so far [1,2]. Many genetic syn-
dromes, a part of RASopathy spectrum, includ-
ing Noonan syndrome (NS), Noonan syndrome 
with multiple lentigines (previously known as 
LEOPARD syndrome), Noonan-like syndrome 
with loose anagen hair, Costello syndrome 
(CS), cardiofaciocutaneous syndrome (CFCS), 
and other clinically related disorders are fre-
quently encountered in pre- and postnatal eval-
uations [3]. Prenatal diagnosis of RASopathies 
is important as it can improve parental coun-
seling and allow families to make informed de-
cisions with regard to pregnancy management, 
treatment options, living with a child with a ge-
netic disorder, termination of pregnancy (TOP) 
and to screen for complications known to occur 
in pregnancies with RASopathies, like HCM, 
and prepare the medical team for management 
of neonatal complications, but challenging, 
mostly because of their variable expressivity, 
as well as their nonspecific prenatal presenta-
tion due to heterogeneous cohorts with over-
lapping prenatal phenotypes [4-6].

Etiopathogenesis
Researcher Susan White, a medical geneti-

cist at Royal Children’s Hospital. Melbourne, 
Australia had a clinical and research interest 
in syndromes of childhood, worked with fam-
ilies for their child’s suspected having genetic 
problems along with VCGS (Victorian Clini-
cal Genetics Services) laboratory team and 
led the implementation of exome sequencing 
(a genomic technique for sequencing all of the 
protein-coding regions of genes in a genome 
known as the exome) [7].

Prenatal diagnosis with G-banded karyotyping 
to detect chromosomal abnormalities results in 
a diagnosis in 9 to 19% of fetal anomalies, and 
chromosomal microarray analysis provides an 
additional 6% yield. The cause of the majority 
of fetal anomalies remains unknown and Ex-
ome sequencing has transformed genetic diag-
nosis after birth and recent studies showed the 
diagnostic yields of 8.5% and 10% to 29 % in 
one series with rasopathies, but its usefulness 
in prenatal diagnosis is still emerging and Trio 
exome sequencing covers a wide spectrum of 
genetic change [8, 9]. In utero manifestations 
of RASopathies are less well characterized 
since approximately half of RASopathy vari-
ants being inherited in postnatal series and the 
de novo nature of all the RASopathy variants 
are severe with a wide range of outcomes, from 
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relatively mild lymphedema to probable perinatal death, and their 
clinical management differs greatly [10].

HRAS is a gene that provides instructions for making a protein 
called H-Ras which is involved primarily in regulating cell divi-
sion and it is an enzyme in the signaling pathway (MAP kinase 
signaling cascade) that relays chemical signals from the outside 
of the cell to the cell's nucleus, telling the cell when to grow and 
divide and thus acts as a key regulator of MAPK (mitogen-ac-
tivated protein kinase) pathway mediated by protein kinase Raf 
which is critical for cell cycle regulation, cellular differentiation 
and growth [11]. The HRAS gene is in the Ras family of onco-
genes, which also includes two other genes, the KRAS and NRAS 
and the proteins produced from these three genes are GTPases 
(Guanosine triphosphate hydrolase), which means it converts 
a molecule called GTP into another molecule called GDP. The 
H-Ras protein acts like a switch as it is turned on by attaching 
(binding) to a molecule of GTP and turned off (inactivated) when 
it converts GTP to GDP [12]. After the protein is bound to GDP, it 
does not relay signals to the cell's nucleus. When mutated, HRAS 
can act as an oncogene, causing normal cells to become cancer-
ous and perturbances (dysfunction) of this MAPK pathway during 
essential cellular functions and development leading to multiple 
consequences in embryonal and later stages of development [13].

A mutation is a change in a DNA sequence. DNA is a chain 
of many smaller molecules called nucleotides. During protein 
formation, DNA (or RNA) nucleotide sequences are read three 
nucleotides at a time in units called codons, and each codon cor-
responds to a specific amino acid or stop signal (stop codon). 
Stop codons are also called nonsense codons because they do not 
code for an amino acid and instead signal the end of protein syn-
thesis [14]. Somatic mutations occur in a single body cell, can-
not be inherited and only tissues derived from mutated cell are 
affected. Germline mutations occur in gametes, can be passed 
onto offspring and every cell in the entire organism will be af-
fected. In contrast to somatic oncogenic mutations in neoplasia, 
the Costello syndrome changes are typically introduced in the 
paternal germline. Missense mutation is a genetic change that 
results in the substitution of one amino acid in protein for anoth-
er [15]. A nonsense mutation is a genetic mutation in a DNA se-
quence that results in a shorter, unfinished protein product. Ge-
netic heterogeneity can be defined as mutations at two or more 
genetic loci that produce the same or similar phenotypes (either 
biochemical or clinical) and it is relevant since it can present 
problems for heterozygote detection [16]. De novo mutation is 
a genetic alteration that is present for the first time in one fam-
ily member as a result of a variant (or mutation) in a germ cell 
(egg or sperm) of one of the parents, or a variant that arises in 
the fertilized egg itself during early embryogenesis [17]. Codon 
encoding residues stabilizing the Ras protein in an inhibited 
conformation and SOS (son of sevenless)1 missence mutations 
disrupts the autoinhibition of Ras GEF (Guanine nucleotide ex-
change factor) activity and Ras GEF stimulate the conversion 
of Ras from inactive GDP bound form to active GTP- bound 
form. SOSI gain-of-function increases the active form of Ras 
and thus increase the Ras/MAPK signaling. SOS-RAS activa-
tion is operated via FRS2 (Fibroblast growth factor receptor 
substrate 2) which acts downstream of TRKA (Tyrosine Kinase 
A) in neurons, and FGFR (Fibroblast growth factor receptor) in 

embryonic stem cell [18]. HRAS (Harvey-Ras) was the first hu-
man proto-oncogene reported and p.Gly12Val in codon 12 is the 
first oncogenic mutation described and Costello syndrome was 
the first disorder associated with germline mutations in the RAS 
family of GTPases [19,20]. A nucleotide change that causes sub-
stitution of glycine at codon 12 to serine (p.G12S)) is the most 
common (80%), c.35G>C nucleotide resulting in p.Gly12Ala 
was seen in 9% and recently, p.Gly13Cys change was identi-
fied as most common amino acid change affecting the glycine 
in Position 13 [21,22]. Rare phenotypes often lethal in infancy 
are p.G12D, p.G12C, p.G12E and its manifestations are shown 
in Table 1 [23,24].

Table 1: Manifestations of Lethal Phenotypes in Infancy

S.no Severe manifestations
1. Hypoglycaemia
2.  renal abnormalities
3.  severe early cardiomyopathy
4.  congenital lung and airway abnormalities
5.  pleural and pericardial effusion
6. chylous ascites 
7.  pulmonary lymphangectasia 
8.  alveolar capillary dysplasia.

Distinctive phenotypic findings of p.Gly13Cys (mild phenotype) 
are dolichocilia (extremely long eyelashes), loose anagen hair, 
fewer have short stature, no malignant risk, papillomata and 
multifocal atrial tachycardia are not seen [25]. HRAS mutations 
are associated with 10-15% of cancer risk. Germline HRAS mu-
tations associated with Costello syndrome, which confers a risk 
for malignant tumors including rhabdomyosarcoma, neuroblas-
toma in childhood and bladder cancer in adolescence [26].

CBL (casitas B-cell lymphoma), a tumor suppressor gene en-
codes E3 ubiquitin ligase which negatively regulates Ras/MAPK 
signaling downstream of RTK (receptor tyrosine kinases) and 
mediates the association of ubiquitin with activated RTK, nec-
essary for receptor internalization & degradation. Mutation in 
CBL reduce the turnover of activated RTK leads to increased 
ERK (Extracellular signal-regulated kinases) activation [27-29]. 
CBL is a cellular homolog of v-Cbl transforming gene of the Cas 
NS-1 murine leukemia virus, responsible for intracellular trans-
port and degradation of a large number of proteins and major-
ity of CBL somatic mutations are reported in myelodysplastic/
myeloproliferative disorders such as chronic myelomonocytic, 
juvenile myelomonocytic, atypical chronic myeloid leukemias 
and germline mutations in CBL are identified in juvenile myel-
omonocytic leukemia [30]. Introduction of exome sequencing, 
leads to identification of Novel genes in 10-30% of mutation 
negative RAS/MAPK syndromes [31,32].

The cardiac hypertrophic response implicates signal transduc-
tion pathways initiated by ligand-stimulated membrane-bound 
receptors (RTKs, GPCRs (G protein-coupled receptors)) and 
biomechanical stress sensors (integrins). GPCR receptors, also 
known as seven-transmembrane receptors (7-TM receptors), are 
a large and diverse family of cell surface receptors found in eu-
karyotes and play a crucial role in cell signaling [33]. It acts 
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through EPAC (Exchange Protein Directly Activated by cAMP) 
and ERK, activate RAS proteins and induce the release of internal 
Ca2+ stores through calcineurin/NFAT (Nuclear Factor of Acti-
vated T-cells) proteins to elicit pathological hypertrophy. All these 
pathways converge on the modulation of transcriptional factors 
(MEF2 (Myocyte Enhancer Factor 2), JUN and GATA4), which 
induce the expression of genes of the hypertrophic program. Some 
“red flags” such as facial dysmorphism, lentigines, sensorineural 
deafness, PVS (Pulmonary Valvular Stenosis) and biventricular 
hypertrophy which is reflected by an extreme right axis deviation 
(a “superior” QRS axis) on the electrocardiogram and represents 
a specific disease marker [34-37]. Germline mutations in RAF1 
are found in 3–5% of NS subjects and show normal valvuloseptal 
growth, but exhibit eccentric cardiac hypertrophy, probably due 
to enhanced MEK-ERK signaling [38]. In contrast to non-syn-
dromic primary HCM, HCM in RASopathies confers a high risk 
of mortality in infancy, which could be attributed to earlier age 
at presentation and occurrence of heart failure [39]. Among the 
neurodevelopmental anomalies, the most common is chiari mal-
formation and other findings include delayed myelination, ven-
triculomegaly, nonspecific white matter abnormalities and corpus 
callosum hypoplasia [40].

Prenatal Diagnosis of Rasopathies
Prenatal testing should be done when any US finding suggestive 
of lymphatic dysplasia, CH (cystic hygroma), increased NT (nu-
chal thickness or translucency) or NF ((Nuchal fold- an ultrasound 
finding during the second trimester of pregnancy, indicating a 
thickened area at the back of the fetal neck (≥ 6mm) and it is a soft 
marker for Down syndrome (Trisomy 21) and other chromosom-
al abnormalities, though the baby may not have a genetic condi-
tion)), hydrops fetalis (HF) or effusions, congenital heart disease 
(CHD), such as valvular dysplasia or hypertrophic cardiomyopa-
thy (HCM); polyhydramnios (excess amniotic fluid, often >90%), 
renal anomalies and skeletal abnormalities like short long bones 
(humerus and femur) and ulnar deviation of wrist [41].

NT (nuchal thickness or translucency) is the amount of fluid be-
hind the fetus's neck in the first trimester of pregnancy detected by 
ultrasound. A small amount of fluid is normal, and measuring the 
amount of fluid can help to find the chances of the fetus has a chro-
mosomal or genetic variant. An anechoic space is visible and mea-
surable sonographically in all fetuses between the 11th and the 
14th week of the pregnancy as in Figure 1. For most pregnancies, 
NT above 3 millimeters prompts a discussion of genetic counsel-
ing and additional testing. The diagnostic yield of increased NT 
was significantly higher as 20% when it was greater than 6 mm 
and 10 % when it was lower than 6 mm and much lower as 1% 
when this finding was seen as isolated.

The association between the increased NT and the chromosomal 
abnormalities has been well documented (Figure 2). It helps us 
to identify the high-risk fetuses for trisomy 21 and other chromo-
somal abnormalities [42]. The rate of chromosomal aberration and 
pathogenic CNVs (copy number variations) on chromosomal mi-
croarray is high among fetuses with NT between 3.0 and 3.4 mm 
[43].

Underlying pathophysiological mechanisms for nuchal fluid 
collection under the skin include cardiac dysfunction, venous 

congestion in the head and neck, altered composition of the ex-
tracellular matrix, failure of lymphatic drainage, fetal anemia or 
hypoproteinemia and congenital infection [45]. The abnormal ac-
cumulation of nuchal fluid decreases after the 14th week.

Figure 1: Normal Nuchal Translucency Thickness (NT)

Figure 2: Increased Nuchal Translucency Thickness (NT) [44].

Hydrops fetalis as shown in Figure 3 is characterized by abnormal 
fluid accumulation in fetuses, presents a significant risk of still-
birth and neonatal mortality, categorized into immune hydrops 
due to blood type (RhD)-incompatible pregnancy and NIHF 
(Non-immune hydrops fetalis) and recent studies have high-
lighted genetic factors as crucial determinants. Whole-exome 
sequencing (WES) reported an overall diagnostic rate of 29% to 
37% and the predominant disease category observed was RA-
Sopathies in NIHF cases affects approximately one in 1700–3000 
pregnancies. Functional analysis of the mutant channels revealed 
a loss-of-function defect in the voltage-dependent sodium chan-
nels (Nav), with one channel exhibiting no conduction and the 
other showing a reduced channel opening due to missense vari-
ants of the SCN4A gene encoding these channels [46-49].
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Figure 3: Hydrops Fetalis

The most frequent isolated finding in RASopathy patients is CH 
(cystic hygroma- 4%), a benign congenital malformation of the 
lymphatic system due to lack of development of communication 
between the lymphatic and venous systems and its incidence 
is approximately 1/6000 live births [50,51]. At the end of the 
fifth week of gestation, the lymphatic system starts to develop 
and fluid accumulation within and along the lymphatic vessel 
tracts and enlargement of the jugular lymphatic sacs are due 
to this connection failure and may resolve if an alternate route 
of drainage develops. 70–80% of cystic hygromas occur in the 
neck, usually in the posterior cervical triangle and 20–30% oc-
curs in the axilla, superior mediastinum, chest wall, mesentery, 
retro-peritoneal region, pelvis and lower limbs [52,53]. Lymph-
angiomas may be divided histologically into two major groups 
based on the depth and the size of abnormal lymph vessels. The 
superficial ones are called lymphangioma circumscriptum. The 
more deep seated ones are cavernous lymphangioma or cystic 
hygroma in areas of areola or loose connective tissues [54]. They 
are multilocular cysts filled with clear or yellow lymph fluid and 
brilliantly transilluminant [55]. The mass increases in size and 
may compresses the neurovascular and respiratory structures 
as shown in Figure 4 to cause fetal bradycardia and airway ob-
struction. Noonan syndrome is one of the RASopathies and this 
group of disorders is often associated with cystic hygroma. Pre-
natal diagnosis by ultrasound is based on the demonstration of 
a septated or non-septated, bilateral cystical lesion in the fetal 
occipitocervical region in both a sagittal and axial plane. Imple-
mentation of assessment of the fetal nuchal translucency (NT) 
in first-trimester screening programs for aneuploidy, the rate of 
detection has been increased and fetuses with a nuchal translu-
cency thickness more than 10 mm and hydropic fetuses had a 
worse outcome [56].

Prenatal detection of hypertrophic cardiomyopathy (HCM) 
through advanced echocardiographic imaging is crucial for early 
diagnosis [58] and its key features include interventricular septal 
hypertrophy as shown in Figure 5, which serves as a primary 
diagnostic marker [59].

Figure 4: Cystic Hygroma in the Neck of a Full-Term Infant 
[57].

Figure 5: (A) Axial view of the fetal heart demonstrates signif-
icant hypertrophy of the interventricular septum (IVS) and car-
diomegaly, with clear visualization of the right ventricle (RV) 
and left ventricle (LV). (B) Short‐axis view of both ventricles 
reveals marked asymmetric hypertrophy of the interventricular 
septum [60].

Embryonal RMS (Rhabdomyosarcomas) is characterized by a 
loss of heterozygosity at 11p15.5 and whole or partial gains of 
chromosomes 2, 8, 12, 13, and/or 20.2 Mutations in the FGFR4/
RAS/AKT pathway and increased PTEN (Phosphatase and 
TENsin homolog) hypermethylation has also been detected in 
this subtype. Embryonal Rhabdomyosarcoma of the Bladder in 
a male toddler is shown in Figure 6. The incidence of RMS in 
patients with CS is 8.7% due to HRAS mutation All individuals 
with malignancy had a codon 12 mutation (especially G12A) 
and the rare G12V mutation is associated with a more severe, 
early lethal phenotype; some patients die from respiratory dis-
tress, hypertrophic cardiomyopathy, or malignant tachycardia 
prior to being diagnosed with CS [61,62].
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Figure 6: Longitudinal Ultrasound of the Bladder Showing a 
Lobulated Mass [63].

Operative image indicating the presence of tumor originating in 
the left medial UL (umbilical ligament) as shown in Figure 7 in 
a 4.4-year-old female on preterm delivery at 34 weeks and right 
medial umbilical ligament as shown in Figure 8 in 5.4-year-old 
female with pregnancy complicated by polyhydramnios.

Figure 7: Showing the Rhabdomyosarcoma of Left Medial Um-
bilical Ligament

Figure 8: Showing the Rhabdomyosarcoma of Right Medial 
Umbilical Ligament [64].

Historically, NF1 (neurofibromatosis type 1) was the first de-
scribed RASopathy, diagnosed through clinical analysis and 
characteristic phenotypical features such as café-au-lait spots, 

intertriginous freckling, neurofibromas, and skeletal dysplasia 
[65]. Genomic DNA analysis of the RASopathy genes to find 
the pathogenic genetic variants by Sanger sequencing as well as 
whole-genome sequencing (WGS) and in the case of NS, where 
approximately 10–20% tested were negative [66]. The second 
most common type of biomarker used in RASopathies is at the 
RNA level, involving qualitative and quantitative analysis of 
mRNA and non-coding RNA (ncRNA), such as microRNAs 
(miRNAs) and long non-coding RNAs (lncRNAs)[67]. Elevated 
anti-thyroid peroxidase (anti-TPO) antibody levels (> 500 units/
ml) are indeed associated with both Noonan syndrome (NS) and 
cardiofaciocutaneous syndrome (CFCS), which are RASopa-
thies, found in 59% of patients with thyroiditis but in none of the 
controls or the patients with non-thyroidal illness [68,69].

The most common cutaneous malignant tumor to have a mu-
tation in the RAS/MAPK pathway is malignant melanoma. A 
recent study done by Scott et al, used parallel or Sanger sequenc-
ing for identifying various mutated genes in prenatal diagnosis. 
Next-generation sequencing (NGS) has found a few other genes 
that were altered in patients of RASopathies, but functionally 
they have been not validated yet. KAT6B, RREB1, and CDC42 
alterations have been found to be associated with NS-like fea-
tures, while a mutation in YWHAZ has been associated with 
cardio-facio-cutaneous syndrome (CFCS) [70].

Genetic testing in cases of unexplained aborted or sudden cardi-
ac deaths, even in previously healthy children, can be valuable in 
establishing a diagnosis, determining the prognosis, and assessing 
risk to family members. A previously healthy infant who suffered 
aborted sudden cardiac death was found to have a de novo genetic 
mutation in the SOS1 gene, typical of Noonan syndrome. Ventric-
ular fibrillation arrest associated with a RASopathy in the absence 
of the typical structural cardiac phenotypes of hypertrophic cardio-
myopathy or pulmonary stenosis [71,72]. Genetic mutations that 
disrupt ion channel function, which are associated with inherited 
cardiac arrhythmias. Dysfunctional HCN4 (hyperpolarisation-ac-
tivated cyclic nucleotide-gated) channels might directly cause 
rhythm disorders related to mutation of SCN5A (9) gene [73].

Therapeutic Options
MEK Inhibitors
The efficacy of small molecule inhibitors for the treatment of HCM 
associated with the RASopathies, employed knockin strategies and 
prenatal or postnatal treatment of the MEK inhibitor, PD0325901, 
successfully rescued embryonic lethality, growth, and cardiac de-
fects in NS-associated Sos1E846K mice [74]. Interestingly, al-
though prenatal treatment of the NS-associated KrasV14I mutant 
mice with PD0325901 rescued HCM, when administered post-
natally, HCM was not rescued [75]. NS-associated mutant might 
engage distinct pathways postnatally for the progression of HCM 
and so treating pregnant mothers with MEK inhibitors, the failure 
of PD0325901 to reverse HCM postnatally is disappointing. Post-
natal treatment of the NS-associated Raf1L613V mutant mice with 
the MEK inhibitor completely rescued HCM with accompanying 
improvement in cardiac functionality [76].

Trametinib, a highly selective reversible allosteric inhibitor of 
MEK1/2 activity, was found to reverse progressive HCM in an 
NS infant harboring either RITS35T or RITF82L mutation. Upon 



J Gyne Womens Heal Care, 2025; Vol 1; Issue 3.     Page: 6 of 11

trametinib treatment, an amelioration of the increased ventricular 
mass was observed, accompanied by reduced outflow tract ob-
struction and improved parameters of heart failure [77]. NS can 
be associated with severe cardiovascular and lymphatic anoma-
lies, potentially lethal during infancy, neonatal and fetal periods 
and trametinib is a promising drug in these critically ill children 
[78].

Certain RASopathy mutants will not be responsive to MEK 
inhibition. The phosphatidylinositol 3′-kinase (PI3K)-AKT 
pathway positively regulates cardiac tissue mass and AKT ac-
tivation through the mammalian target of rapamycin (mTOR) 
increases protein synthesis and prevents muscle atrophy and 
apoptosis, resulting in cardiomyocyte hypertrophy. Pharmaco-
logical studies showed that postnatal treatment of NSML-asso-
ciated Pptn11Y279C/+ mice with rapamycin, a mTOR inhibitor, 
prevented the development of HCM and associated increase in 
cardiomyocyte hypertrophy due to increased AKT activity [79]. 
PTPN11Q510E mutation that represents a NSML RASopathy 
who exhibited severe HCM was treated with a mTOR inhibi-
tor, everolimus improved heart failure and decreased the levels 
of the HCM marker, brain natriuretic peptide. Unlike in the Pt-
pn11Y279C/+ mice, everolimus treatment in this patient did not 
reverse the HCM, which could imply that earlier intervention 
prior to irreversible cardiac remodeling would have been more 
effective [80].

Src Family Tyrosine Kinase Pathway Inhibition by prenatal and 
postnatal treatment with low-dose dasatinib in mice also success-
fully rescued the HCM phenotype [81].

C-Type Natriuretic Peptide Analogues
Achondroplasia is caused by a gain-of-function mutation in the 
fibroblast growth factor receptor 3 (FGFR3) gene, a member of 
the tyrosine kinase family, resulting in prolonged activation of 
RAS/MAPK and alteration of chondrocyte proliferation and dif-
ferentiation at the growth plate level. An analogue of CNP that is 
resistant to proteolytic degradation (BMN111/vosoritide; BioM-
arin) significantly improved growth plate abnormalities and bone 
growth by reducing RAS/MAPK activation [82].

Statins
Statins were first investigated in the treatment of cognitive im-
pairment in NF1 and lovastatin was shown to improve synaptic 
plasticity as well as attention and memory in NF1 patients, but 
not with simvastatin [83-85]. Although they are contraindicated 
during pregnancy, the clinical effects of statins in pregnant wom-
en through an interactive review by the analysis of fifteen original 
articles within five years demonstrate that statins have not been 
associated with the development of fetal malformations and it is 
useful in preventing unfavorable cardiovascular outcomes, with 
the potential to reduce oxidative stress and angiogenic dysfunc-
tion [86]. However, the use of statins to prevent pre-eclampsia in 
humans has not been properly clarified. Statins may be safe when 
used during pregnancy since there was no association with con-
genital anomalies, but caution is needed because of an increased 
risk of low birth weight and preterm labor [87,88].
An important issue is the optimal age for starting treatment. In 
several animal studies, MEK (Mitogen-Activated Protein Ki-
nase) inhibitor treatment was initiated during embryonic devel-

opment (by exposing the pregnant mothers to the MEK inhib-
itor) and continued after birth. MEK inhibition prevented the 
various developmental defects (i.e. craniofacial, cardiac, and 
growth defects) when started prenatally, whereas this treatment 
did not ameliorate these defects when started after weaning [89]. 
Another issue is the duration of treatment and therapy aimed 
at allowing normal growth and cognitive development should 
probably be maintained throughout childhood.

Gene Editing
In utero gene editing has the potential to treat genetic diseas-
es prenatally. Clustered regularly interspaced short palindrom-
ic repeats (CRISPR)-CRISPR-associated 9 (CRISPR-Cas9) or 
base editor 3 (BE3) in utero, seeking therapeutic modification 
of Pcsk9 or Hpd in wild-type mice or the murine model [90]. 
Intronic CRISPR repair is a therapeutic strategy to treat NS 
(Noonan Syndrome)-associated hypertrophic cardiomyopathy 
[91]. A CRISPR-based epigenetic repression system downreg-
ulating MAP2K1 and MAP2K2 expression for the treatment of 
RASopathies was proposed in animal models [92].

Discussion
In utero manifestations of RASopathies are less well character-
ized and approximately half of RASopathy variants being in-
herited in postnatal series [93]. The Noonan syndrome has been 
well established in its association with NIHF (Nonimmune hy-
drops fetalis), defined by the presence of fetal ascites, pleural 
or pericardial effusions, skin edema, cystic hygroma, increased 
thickness of nuchal translucency (≥3.5 mm), or a combination of 
these conditions. Pregnant women with fetuses that have NIHF 
are also at risk for complications resulting from a form of pre-
eclampsia called mirror syndrome [94,95]. Some genetic disor-
ders underlying NIHF portend mild long-term outcomes, where-
as others are lethal despite treatment [96,97]. Increased index 
of suspicion of Costello syndrome (CS) in newborn is shown in 
Table 2.

Table 2: Features to Suspect CS in Newborn

1. Fetal atrial tachycardia
2. Increased birth weight and head circumference
3. Neonatal hypoglycemia
4. severe feeding difficulties
5. Urinalysis for hematuria – embryonal 

rhabdomyosarcoma
6. Loose, redundant skin on the hands and feet seen in 

newborns – key role in clinical suspicion of CS

Prenatal diagnosis of HCM is critical, as it enables the clini-
cians to anticipate potential complications such as LVOTO (Left 
ventricular outflow tract obstruction), arrhythmias, and heart 
failure, which may manifest shortly after birth [98]. Interven-
tricular septal thickness measured during fetal life is a reliable 
predictor of postnatal outcomes, with a threshold of ≥ 4.5 mm is 
associated with higher risk of perinatal morbidity and mortal-
ity [99]. Long‐term outcomes of fetal HCM are influenced by 
underlying etiology. Parasternal long axis view showing “ven-
triculomegaly” (massive RVH and LVH) as shown in Figure 9 
is well tolerated in a 9-year-old boy with Costello syndrome as 
in Figures 10 and 11 with increased RV pressure as in Figure 12 
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due to increased capillary growth along with the hypertrophied 
muscle [100-102].

Figure 9: Showing Biventricular Hypertrophy (Ventriculomeg-
aly) in a 9-Year-Old Boy with Costello Syndrome

Figure 10: Radiant Smile, Warm, Sociable Personality and Skin 
Folding below the Lower eyelids of Costello Syndrome in a 
9-Year-Old Boy

Figure 11: Tight Tendoachilles and Plantar Hyperkeratosis in a 
9-Year-Old Boy with Costello Syndrome

Figure 12: Apical 4 Chamber View – CW Doppler showing 
High Velocity TR (Tricuspid Regurgitation) Jet with Early Peak-
ing Suggesting High RV Pressure at Suprasystemic Levels-165 
mmHg

Conclusion
Rasopathy testing is recommended when the fetus shows an iso-
lated increased NT ≥5.0 mm or when NT of ≥3.5 mm and at least 
one of the following ultrasound anomalies is present: distended 
JLS (Jugular Lymphatic Sacs), hydrops fetalis, polyhydramnios, 
pleural effusion, ascites, cardiac defects and renal anomalies 
[103]. Invasive prenatal testing is proposed for fetuses with NT 
values above 2.5 mm. Rapid screening for chromosomal aneu-
ploidy (13, 18, 21, X, and Y), chromosomal microarray (CMA), 
and sequencing of the genes involved in Noonan syndrome 
and RASopathies are routinely performed. Whole genome se-
quencing identified two compound heterozygous variants in the 
NUP107 gene in fetuses [104]. Rigosertib, a novel dual Ras/
MAPK and PI3K/AKT pathway inhibitor, reverses Hypertrophic 
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Cardiomyopathy in RAF1-Associated Noonan Syndrome [105]. 
The MEK inhibitor trametinib was an effective drug therapy for 
cardiac hypertrophy in NS mice with heterozygous LZTR1 (Leu-
cine-zipper–like posttranslational regulator 1) mutation [106]. 
More than half of the RASopathy cases in utero manifests during 
the first trimester and a cutoff  value of NT ≥ 6 mm  missed  45% 
of cases during this period. Exome sequencing is a preferable op-
tion due to its efficiency within the limited timeframe in prenatal 
settings [107].
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