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Abstract

defined soft operations.

.

Soft set theory constitutes a mathematically rigorous and structurally expressive formalism for modeling
complex systems characterized by epistemic indeterminacy, vagueness, and parameter-dependent
variability—features that pervade foundational problems across decision theory, engineering, economics,
and information sciences. Central to this theoretical framework is a diverse repertoire of algebraic
operations and binary product constructions, which collectively endow the universe of soft sets with a rich
internal algebraic architecture capable of capturing intricate parametric dependencies. Within this context,
we introduce and formally investigate a novel product of soft sets, designated as the “soft union—symmetric
difference product”, defined over soft sets whose parameter domains are endowed with group-theoretic
structure. Two key structural implications emerge from our investigation: (i) the incorporation of the soft
union-symmetric difference product reinforces the internal operational coherence of soft set theory by
embedding it into a formally consistent and axiomatically grounded algebraic environment; and (ii) the
operation offers a foundational scaffold for the development of a generalized soft group theory, wherein
group-parameterized soft sets simulate the axiomatic behavior of classical group structures under newly
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Intrdouction

A wide spectrum of advanced mathematical
formalisms has been developed to model
systems characterized by uncertainty,
vagueness, and epistemic indeterminacy—
phenomena ubiquitous in applied contexts
ranging from engineering and economics
to social sciences and medical diagnostics.
Classical frameworks such as fuzzy set
theory and probabilistic models, despite
their expressive capabilities, are constrained
by foundational assumptions that limit their
generality. In particular, fuzzy set theory
by Zadeh relies on subjectively assigned
membership functions, while probabilistic
models presuppose known distributions and
repeated experiments—conditions that are
frequently violated in systems governed
by parameter-dependent or qualitative
uncertainty [1]. To address these limitations,
Molodtsov introduced soft set theory as
a parameter-based framework designed
to model uncertainty without reliance on
probabilistic ~ or  membership-theoretic

axioms [2]. Its minimal axiomatic structure

and inherent flexibility have rendered
it particularly amenable to algebraic
generalization, thus making it suitable

for decision-making tool [3-23]. Since its
inception, soft set theory has been equipped
with an increasingly sophisticated suite
of algebraic operations. Maji et al. laid the
groundwork by introducing foundational
operations such as union, intersection,
and AND/OR-products, while Pei and
Miao reinterpreted these operations within
information-theoretic paradigms, extending
the formalism to relational and multivalued
domains [24, 25]. The algebraic landscape
was further refined through the work of Ali
et al., who defined restricted and extended
variants, thereby enhancing the granularity
of soft set operations [26]. Subsequent
developments—by Yang, Feng et al., Jiang
et al., Singh and Onyeozili, Zhu and Wen,
and many others—have introduced a variety
of binary product constructions and equality
notions aimed at deepening the algebraic
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structure of soft sets of particular relevance to algebraists is the
evolution of soft equalities and soft subsethood relations [27-34].

Recent advances have substantially deepened the algebraic
infrastructure of soft set theory through the introduction of a
wide spectrum of innovative binary operations and structural
refinements; each rigorously developed within formally defined
algebraic settings. Notable contributions include the definition and
axiomatic analysis of soft product operations over semigroups,
groups, and rings, as well as the concept of subsets and equality
relations tailored for uncertainty modeling. In particular, in
collective efforts have established a robust, systematically
extensible algebraic infrastructure that continues to propel the
theoretical development of soft set theory [35-39]. Collectively,
these investigations have established a mathematically rigorous
and extensible foundation that enables the construction of
sophisticated soft algebraic models capable of addressing
complex problems in abstract algebra, logic, and decision theory
under uncertainty.

The classical soft set introduced by Maji et al. was generalized
by Pei and Miao and later formalized through soft congruences
by Qin and Hong [25, 26, 40]. Jun and Yang extended this by
defining J-soft equalities and associated distributive frameworks
[41]. Liu et al. introduced L-soft subsets and L-equalities,
highlighting cases where classical distributive identities fail
[42]. These developments culminated in categorical frameworks
advanced by Feng and Yongming, who examined associativity,
commutativity, and distributivity under generalized equality
schemes and demonstrated that certain classes of quotient soft
algebras form commutative semigroups [43]. More recent
generalizations—such as g-soft, gf-soft, and T-soft equalities—
have been framed within lattice-theoretic and congruence-based
settings by Abbas et al., Alshami, and Alshami and El-Shafei,
reflecting a methodological shift toward structured algebraic
foundations [44-47]. Simultaneously, Cagman and Enginoglu
reformulated the axiomatic basis of soft set operations, resolving
critical inconsistencies and establishing a stable algebraic
framework [48]. The soft intersection—union product has been
adapted to rings by Sezer, yielding well-formed structures such
as soft union rings [49]. Conversely, the soft union—intersection
product has been explored within group-theoretic by Kaygisiz
and semigroup-theoretic by Sezer et al., contexts, with structural
properties often contingent on the algebraic behavior of identity
and inverse elements in the parameter domain [50, 51].

Against this backdrop, the present study introduces a novel
product—the soft union—symmetric difference product—
defined over soft sets whose parameter spaces are structured as
groups. This operation is rigorously formalized and subjected to
detailed algebraic analysis, with particular attention to closure,
associativity, commutativity, idempotency, the compatibility of the
product with generalized soft subsethood and equality relations,
along with its behavior with respect to both null and absolute
soft sets. In addition, the interplay between the proposed product
and previously established soft product operations is thoroughly
investigated within the framework of soft subset classifications,
offering refined insights into their relative expressive capacities
and mutual structural compatibilities. Our results indicate that the
proposed product induces a well-defined product on the collection

of soft sets, thereby enabling a natural extension of classical
group-theoretic principles to the soft context. In doing so, this
work lays the conceptual foundation for a soft group theory,
wherein algebraic systems defined over group-parameterized soft
sets obey suitably adapted axioms and binary operations. The
remainder of this paper is organized as follows. Section 2 recalls
necessary preliminaries and foundational definitions related to
soft sets and soft equalities. Section 3 introduces the soft union—
symmetric difference product and develops its algebraic theory,
including structural theorems and illustrative examples. Section
4 summarizes the principal findings and outlines directions for
future work, particularly with respect to the development of soft
algebraic systems and their applications in abstract algebra, formal
semantics, and uncertainty modeling.

Preliminaries

This section presents a rigorous and methodical re-evaluation of
the foundational definitions and algebraic underpinnings that serve
as the formal substrate for the theoretical constructs elaborated
in the subsequent discourse. While the original conception of
soft set theory was introduced by Molodtsov as a parameterized
generalization for modeling uncertainty, its formal definitional
schema and operational calculus were substantially restructured
in the influential reformulation by Cagman and Enginoglu [2, 48].
Their axiomatic revision endowed the theory with heightened
structural coherence and broadened its applicability across diverse
algebraic and decision-theoretic settings. The present investigation
adopts this refined formalism as the axiomatic foundation upon
which all further constructions are based. Accordingly, every
algebraic development, operational specification, and theoretical
generalization in the forthcoming sections is rigorously articulated
within this enhanced framework, ensuring both internal
consistency and formal adherence to contemporary standards in
soft algebraic systems.

Definition 2.1. Let £ be a parameter set, U be a universal set, P(U)
be the power set of U, and H<= E [48]. Then, the soft set over U
is a function such that f,: E—P(U), where for all weH, f, (w)=o.
That is,

5=, £, (w): weE}
From now on, the soft set over U is abbreviated by SS.

Definition 2.2. Let f, be an SS[48]. If /, (w)=9 for all weE, then f,,
is called a null SS and indicated by ¢, and if f, (w)=U, for all we
E, then f, is called an absolute SS and indicated by U,

Definition 2.3. Let f, and g, be two SSs [48]. If f, (w) = g (w), for
all weE, then f, is a soft subset of g, and indicated by f,E g If
J,, w) = g (w), for all weE, then f, is called soft equal to g, and
denoted by 1, =g...

Definition 2.4. Let f, and g, be two SSs [48]. Then, the difference
of £, and g is the SS /\g,, where (/,\g ) (W)=, (w)\gR(w), for all
weE.

Definition 2.5. Let f, be an SS [48]. Then, the complement of f,,
denoted by f,°, is defined by the soft set f,“: E—P(U) such that

£ =UY.(e)=(f, (e)), for all e¢E.
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Definition 2.6. Let /, and g, be two SSs [52]. Then, f, is called a
soft S-subset of g, denoted by f,, € g,, if for all weE, f, (w)=M
and g, (w)=D, where M and D are two fixed sets and M< D.
Moreover, two SSs f, and g are said to be soft S-equal, denoted

by fy = s 8 if £, g, and g E /.

It is obvious that if /= g, then f, and g, are the same constant
functions, that is, for all weE, f, (w)= g, (w)=M, where M is a
fixed set .

Definition 2.7. Let f, and g, be two SSs [52]. Then, f, is called
a soft A-subset of g, denoted by 1, E, g, if, for each a,b¢ E, f,

(@) =g (b).

Definition 2.8. Let f, and g, be two SSs [52]. Then, f, is called
a soft S-complement of g, denoted by f, =, (g,), if, for all we £,
fi w)=M and g, (w)= D, where M and D are two fixed sets and
M=D'". Here, D' = U\D.

From now on, let G be a group, and S (U) denotes the collection
of all SSs over U, whose parameter sets are G; that is, each
element of S (U) is an SS parameterized by G.

From now on, the symmetric difference of the family B={Ci: i¢
I} such that I is an index set, is denoted by

FANE S :A; €, = C,AC,A .. AC,
i€

for all x¢G.

Definition 2.9. Let f_and g, be two two SSs [52]. Then, the soft
symmetric difference-difference product f ¢, g . is defined by

G®s/d gG)(x): w:Ayz (f(;(y)\g(;(z))a (y,Ze G)
for all xeG.

Definition 2.10. Let /. and g, be two SSs [53]. Then, the
intersection-difference product /e, g is defined by

(/2,0 2)@)=L] (=y2) (£, (v)\g (@), (v:2¢G)
for all x¢G.

For additional information on SSs and Picture SS, we refer to
[54-106].

Soft Union-symmetric Difference Product

In this section, we introduce a novel product on SSs, termed
the soft union—symmetric difference product, defined over
parameter spaces endowed with group structures. A detailed
algebraic investigation is conducted to rigorously characterize
the foundational structural properties of this product. Particular
emphasis is placed on analyzing its interaction with various
generalized notions of soft equality and on the stratification of
soft subsets under multiple inc-lusion criteria. To bridge the gap
between abstract formalism and concrete intuition, the theoretical
exposition is supp-lemented with carefully selected examples that
illustrate the operational behavior and highlight key algebraic
pheno-mena associated with the product. Furthermore, the
relationships between the proposed product and several existing
soft products together with null and abslute SS are examined

with respect to soft subsethood, thereby clarifying its algebraic
compatibility within the broader operational framework of SS
theory. This analysis underscores the structural coherence of the
product and its potential to serve as a foundational component in
the development of more comprehensive soft algebraic systems
as possible to the text they refer to and aligned center.

Definition 3.1. Let f_and g . be two SSs. Then, the soft union-
symmetric difference product f, € g is defined by

(fG ®u/ng)(x) = »L%Ja (X:yz)(f(; (y)Agg(Z))a y’ZeG
for all x¢G.

Note here that since G is a group, there always exist y,z¢G
such that x = yz, for all x¢G. Let the order of the group G be
n, that is, |G|=n. Then, it is obvious that there exist n different
combinations of writing styles for each x¢G such that x=yz,
where y,z¢G.

Note 3.2. The soft union-symmetric difference product is

well-defined in S, (U). In fact, let f_,g_.p..n, ¢ S, (U) such that

(-2, )= n.). Then, f=p_and g =n_, implying that /. (x)=p,,
(x) and g (x)=n(x), for all x¢G. Thereby, for all x¢G,

e, 2)0=Y (1. 0Ag, @)
=Up 0 2)
=(pG ®u/sn G)(x)

Hence’fG®u/s ng pG®u/an'

Example 3.3. Consider the group G={u,w} with the following
operation:

Letf_ and g be two SSs over U= D, = {<x,y>: X’ =)° = e,xy =
yx}={ex,y,yx} as follows:
S {xyx ), (w, {x.y )} and g ={(u.{e,y,yx}),(w, {x.y})}

Since u = uu = ww, (f 2 g )W=(f(WAg. () U (f,(w)Ag,
(w))={ex,y}, and since w = uw = wu, (f.8 g )(W)= (f(u)Ag,
(W) U (f,(W)Ag(u))=1{ex,y,yx} is obtained. Hence,

fG®u/ng= {(u’ {e’x’y})’(wa {e,xd’»yx})}

Proposition 3.4. The set S (U) is closed under the soft union-
symmetric difference product. That is, if /. and g, are two SSs,
thensoisf e g..

PROOF. It is obvious that the soft union-symmetric difference
product is a binary operation in S,(U). Thereby, S (U) is closed
under the soft union-symmetric difference product.

Proposition 3.5. The soft union-symmetric difference product is
not associative in S,(U).

PROOF. Consider the group G and the SSs f. and g, in
Example 3.3, and let #_={(u,{y.yx}),(w,{e,x,y})} be an SS over
U={ex,yyx}.
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Since f.o g ={(u,{e.x,y}),(w,{ex,y,yx})}, then
(152080) 8y lti= 1w {e.xyx}),(w, {ex})}

Moreover, since g8 /A= {(u,{e}),(w,{x,yx})}, then
J2u88yho) =1 {ex.yyx}),(w, {ex,y})}

Thereby’ (fG®m£G) ®u/shG¢fG®u/s(gG®u/shG)'

Proposition 3.6. The soft union-symmetric difference product
is not commutative in S(U). However, if G is an abelian group,
then the soft union-symmetric difference product is commutative
inS.(U).

PROOF. Let .. and g, be two SSs and G be an abelian group.
Then, for all x¢G,

(F0,.2)00=Y (098¢ ()

~Yie 0,00
=(8,8,/; )x)
implying that /& ¢ =g .8 f..

Proposition 3.7. The soft union-symmetric difference product is
not idempotent in S(U).
PROOF. Consider the SS f,. in Example 3.3. Then,

JoBu = 1w e),(w, iy yx})}

implying that f.& f #f..

Proposition 3.8. Let f,_ be a constant SS. Then, f.&  f.=2..
PROOF. Let f, be a constant SS such that, for all xe¢G, f.(x)=4,
where 4 is a fixed set. Hence, for all x¢G,

(.0, /:)0=U (£.0)AL ()=o)

xX=yz

Thereby, f & f.=8.

Remark 3.9. Let S _*(U) be the collection of all constant
SSs. Then, the soft union-symmetric difference product is not
idempotent in §;*(U) either.

Proposition 3.10. Let /.. be a constant SS. Then, f 8 ¢ =0 ®
I

PROOF. Let f be a constant SS such that, for all xeG, f.(x)=4,
where A4 is a fixed set. Hence, for all x¢G,

o0 )m=Urmae ) =U (. m)ae) =)

Thereby, f_ e o f,. Similarly, for all x¢G,
(sg0,/)0=U (06,0087, =U (o47,2) ~/,)

Thereby, o & f.=/.

Remark 3.11. ¢ is the identity element of the soft union-
symmetric difference product in S.*(U). Besides, the inverse of
each element is itself in S.*(U) with respect to the soft union-
symmetric difference product by Proposition 3.8.

Proposition 3.12. Let /. be a constant SS. Then, f.e U =U o

Lds‘fG:fGC'
PROOF. Let /. be a constant S5 such that, for all x¢G, f.(x)=4,
where A is a fixed set. Hence, for all x¢G,

(68, U)0)=U (L 0IAU ) = U (f,(00AU) =/5(x)

Thereby, f.e U =f.c. Similarly, for all x¢G,

Uy, /o)=Y (U,0A[(2) =U(UAS(2)) =/ (x)
Thereby, U e f(x)=f.

Proposition 3.13. Let /. be a constant SS. Then, f 8 f.°= f. ®
WJG = UG'

PROOF. Let /. be a constant S5 such that, for all x¢G, f.(x)=4,
where A4 is a fixed set. Hence, for all x¢G,

(58, ))=U( 0Aff (2)) =U= U, (x)

Thereby, f.  f.*=U,. Similarly, for all x¢G,

(/[ )Y A@) = U = Uy()

Thus, /e, /= U,

.
Proposition 3.14. Let f, and g be two SSs. Then, f & g =0 . if
and only if f, = ( g..

PROOF. Let /. and g, be two SSs. Suppose that /.= ¢ g . Hence,

for all ueG, f (u)= M and g (u) = D, where M and D are two
fixed sets and M=D. Thus, for all x¢G,

(fc®u/>gc)(x)=9=(fG(V)AgG(z)) =o0=o0_ )

Thereby, fG®u/SgG =0

Conversely, suppose that f.o ¢ = o .. Then, (f,® g )(x)= o,
(x)= o, for all x¢G. Thus, for all x¢G,

0 ()= 2= (f2, &)=V, ()AL (2))

This implies that f_(x)Ag (y) = o, for all x,y¢G. Thus, f(x)= g,
(v) for all x,y¢G. Thereby, f. =S g...

Proposition 3.15. Let f and g, be two SSs. If /. = (g,,), then
Je®u = Us

PROOF. Let /. and g be two SSs. Suppose that f. =; (g,)".
Hence, forall u¢G, f_(u) = M and g (u) = D, where M and D are
two fixed sets and M=D". Thus, for all x¢G,

(.2, g )X)=U(f.("Ag () = U= U, (x)
Thereby, & g.= U..

Proposition 3.16. Let /. and g be two §Ss. Then, (f .8, g.)= /..

®i/s' gG'

PROOF. Let fG and g be two SSs. Then, for all x¢G,
(/8.8 )=V ,()Ag (2)) )°
=0(f,)()Ag,(2))'
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=N (,0)ug )
:(f(;®i/5v g(;)c(x)

Thus, (f.@,,g.)°=/.®,, &, For more on the symmetric difference
complement (L) operation, we refer to [107].

Proposition 3.17. Let f_ and g, be two SSs, where G is an abelian
group. If f. = g, thenfys, g .=g.® /o
PROOF. Let f_and g, be two SSs such that f, = g_. Then, for
eachx,y¢G, f.(x) =g, (). Thus, for all x¢ G,

20 X)=V(; 0Ag(2) = U(g(2)V,) ) =(g; @, /) (x)

Thus’ (fG®u/ng:gG ®u/JG'

Remark 3.18. Let f and g, be two SSs. If f = g, then f &
878N

Proposition 3.19. Let / and g, be two SSs. Then, f(}@S/dgG%’G@

s/dgG'
PROOF. Let f and g be two §Ss. Then, for all x¢G,

(f:2,480) ) = £ ("\g, (2)
=U(l,0)Ag,(2) = (/;2,,&,)(x)

There by, G®s/dgG gMf‘G®u/ng'

Proposition 3.20. Let f_ and g, be two SSs. If one of the
following assertions is satisfied, then f & g =f=® g .
i. g, & f,and |G| = n, where n is a positive odd integer
ii. /.= U, and |G| = n, where n is a positive odd integer
iii. f,. = g,
PROOF. Let f, and g be two SSs.
i. Suppose that g.€ . /.. Hence, for all u¢G, f(u) = M and g, (u)
= D, where M and D are two fixed sets and DS M. Thus, for all
xeG,
(1:2,48)) = B/ \g4(2)
=U(f;("Ag(2))
(152, 8) (%)

There by, 1,848 = /®u80
ii. Suppose that fG=UG and |G| = n, where n is a positive odd
integer. Hence, for all u¢G, f (u)=U(u) = U. Thus, for all xeG,
(f584a8) ()= &/, (») \g,(2))
=U({;(n)Ag,(2)
=(/52,&5) )

Thereby, /.8, ,8.= /., &

iii. Suppose that f. = ¢ g.. Hence, for all u¢G, f (u) = M and
g,(u) = D, where M and D are two fixed sets and M = D. Thus,
for all xeG,

(fo20480) ()= B/(0) \g(2))

=U(f,()Ag,(2))

(/42 85)X)

Thereby, /.8, 2.~ /.®,&c

Proposition 3.21. Let f, and g . be two SSs. Then, f .8, ¢ E f.® g .
PROOF. Let f, and g be two SSs. Then, for all x¢G,

(12,8 =Ll (f,()\g(2))

= U(0)Ag )

:(fG®u/ng)(x)
Thereby, f 0,8, & [.®,8:

Proposition 3.22. Let f_ and g be two SSs. If g & ( /, then, f_®
1086~ Jo® o

PROOF. Letf,, and g be two SSs. Suppose that g &  f_. Hence,
for all ueG, f(u) = M and g (u) = D, where M and D are two
fixed sets and D<= M. Thus, for all x¢G,

2,20 = (. 0)\g,(2)
=U(0)Ag,(2)
:(fG®u/sg G)(x)

TherebYa f;;®i/dg(; =J®u8e

Conclusion

This study begins by formally introducing a novel product of
soft sets, termed the soft union—symmetric difference product,
defined over parameter spaces endowed with a group-theoretic
structure. Building upon this foundational construct, we
undertake a rigorous algebraic analysis of the product, with
particular emphasis on its behavior under various taxonomies of
soft subsethood and its alignment with generalized notions of soft
equality. The systematic formulation and examination of such
operations within an axiomatized framework align with the core
methodology of abstract algebra, where structural classification is
predicated on the verification of key properties—such as closure,
associativity, commutativity, idempotency, and the presence
(or absence) of identity, inverse, and absorbing elements. In
addition, we explore the product’s interaction with existing
soft binary operations together with its relation with null and
absolute soft set, with a focus on its algebraic behavior relative
to soft subset and equality structures. The structural insights
gained from this analysis not only reinforce the internal logical
coherence of the proposed framework but also demonstrate the
product’s potential to generalize classical algebraic constructs,
thereby extending the expressive and applicative capacities of
soft algebraic systems. The theoretical foundation articulated
herein addresses notable gaps in the existing literature and paves
the way for the development of soft group theory—a new line
of inquiry grounded in rigorously defined soft operations over
group-structured parameter domains. Future research directions
may involve the synthesis of additional algebraic operations in
soft environments and the refinement of generalized equality
frameworks, contributing to the ongoing expansion of soft set
theory’s role in abst-ract algebra, computational modeling, and
uncertainty-aware decision analysis.
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